The article discusses the evolution of model inference techniques from 2017 to a projected 2025, highlighting the progression from simple frameworks like Flask and FastAPI to more advanced solutions like Triton Inference Server and vLLM. It details the increasing demands on inference infrastructure driven by larger and more complex models, and the need for optimization in areas like throughput, latency, and cost.
This article details how to accelerate deep learning and LLM inference using Apache Spark, focusing on distributed inference strategies. It covers basic deployment with `predict_batch_udf`, advanced deployment with inference servers like NVIDIA Triton and vLLM, and deployment on cloud platforms like Databricks and Dataproc. It also provides guidance on resource management and configuration for optimal performance.